WL-TR-94-5046

A KEY ELEMENT TOWARD CONCURRENT ENGINEERING
OF HARDWARE AND SOFTWARE: BINDING VERY HIGH
SPEED INTEGRATED CIRCUITS (VHSIC) HARDWARE

DESCRIPTION LANGUAGE (VHDL) WITH ADA 95

MICHAEL T. MILLS, LT COL

OCTOBER 1994

FINAL REPORT FOR 04/12/94-10/24/94

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

SOLID STATE ELECTRONICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7331

IHTCQUALENKHMEECT”DI

19950530 071

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related procurement,
the United States Government incurs no responsibility or any obligation whatsoever.
The fact that government may have formulated or in any way supplied the said
drawings, specifications, or otherwise in any manner constructed, as in licensing
the holder, or any other person or corporation; or as conveying any rights or
permigssion to manufacture, use, or sell any patented invention that may in any way
be related thereto.)

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including foreign
nations.

This technical report has been reviewed and is approved for publication.

Dnpeotioid) Ipiidde %wm
MICHAEL T. MILLS, LtCol, USAFR JOHN W. HINES, Chief

Design Branch Design Branch
Microelectronics Division Microelectronics Division

STANLEY EK WAGNER,!Chief
Microelectronics Division
Solid State Electronics Directorate

If your address has changed, if you wish to be removed from our
mailing list, or if the addressee is no longer employed by your
organization, please notify WL/ELED, WPAFB, OH 45433-7331 to help
us maintain a current mailing list.

Copies of this report should not be returned unless return is
required by security considerations, contractual obligations, or
notice on a specific document.

fForm ved
REPORT DOCUMENTATION PAGE fuindghuplin

Pubhic reporting burgen tor this c::l‘lmm of mmtm " ESUMated 1O AvRrage | hOUr DET FEI00ME, INCIUTING the time 1Of review:ing Instructions, RBICHING ex1ItinG CBTd SOUICES,

Qatherng and m ,'tbe] q and re g the coliection of intor . Send cor 1093rding this burden estimate or any other aspect of this
Dovas O'IO?;he:ly, Suite uo'A.T:::;’o«. TR 2302. 4303 nd 15 the Offree o1 WManagenent ond ludge:';lm‘:t' m&*'m“ '"'8'7&?”%%'“ o, DE z‘g;’ég’,m puttenon
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED :

OCT 1994 FINAL 04/12/94-10/24/94
4. TITLE AND SUBTITLE A KEY ELEMENT TOWARD CONCURRENT S. FUNDING NUMBERS

ENGINEERING OF HARDWARE AND SOFTWARE: BINDING
VERY HIGH SPEED INTEGRATED CIRCUITS (VHSIC)
HARDWARE DESCRIPTION LANGUAGE (VHDL) WITH ADA 95

6. AUTHOR(S)

MICHAEL T. MILLS, LT COL

P ———— = L = et e A= = = o ————— — — ——————————r————————— - ————
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SOLID STATE ELECTRONICS DIRECTORATE REPORT NUMSER
WRIGHT LABORATORY

ATR FORCE MATERIEL COMMAND

WRIGHT PATTERSON AFB OH 45433-7331

B T T~ A A S i O A
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

SOLID STATE ELECTRONICS DIRECTORATE
WRIGHT LABORATOQRY WL-TR-94-5046
AIR FORCE MATERIEL COMMAND

WRIGHT PATTERSON AFB OH 45433-7331

11. SUPPLEMENTARY NOTES

P ——— T ————————r——
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS
UNLIMITED.

[137ABSTRACT (Maximum 200 words)
This report describes a software interface (or binding) for supporting
concurrent development of electronic hardware designed in Very High Speed
Integrated Circuits (VHSIC) Hardware Description Language (VHDL) with
software programmed in Ada 95. The purpose of this binding is to provide
an initial framework from which future computer aided engineering (CAE)
implementors can develop concurrent engineering capability into- their
work stations. This software binding includes VHDL calls to Ada 95
subprograms and functions using the new VHDL-93 ‘FOREIGN attribute and
providing optional Ada 95 functionality in place of concurrent VHDL
process statements to meet Ada 95 language rules expected by future Ada
95 compilers. A binding is also provided for Ada 95 calls to VHDL
representations using new Ada 95 pragmas: Import, Export, and Convention.
BNF descriptions were expanded to analyze constraint differences for
consistent functionality across languages. Examples show VHDL processes
synchronizing with Ada 95 tasks and Ada 95 remote procedure calls across
partitions for distributed processing applications.

14. SUBJECT TERMS 15. NUMBER OF PAGES
VHDL - ANSI/IEEE Std 1076-1993 - Design Language - 29
Hardware Description Language, Ada 95 - ANSI/ISO 16. PRICE CODE

revision of ANSI/MIL STD 1815A, VHDL to Ada 95 Binding

BT T G S YT S T e T YT =
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 i Standard form 298 (Rev 2-89)

= W N

~ o O»

o

11.

Table of Contents

Introduction

Rationale for Binding VHDL with Ada 95
VHDL Provided Language Interface Feature
VHDL to Ada 95 Binding - BNF description
Package VHDL to Ada_95
VHDL to Ada 95 Binding - Example
Ada 95 Provided Language Features . .
Package Ada_ 95 to VHDL
Ada 95 to VHDL Binding - Examples . . .
System Design Considerations

VHDL processes interacting with Ada

features . . e e e . .
a. Interactlng with Ada tasks

95 concurrent

b. Interacting with Ada 95 protected types
c. Interacting with Ada 95 asynchronous control

d. Interacting with Ada 95 distributed

processing

12. Mapping Ada 95 Software directly to hardware . . .

Appendix A Expanded BNF Descrlptlons of Key VHDL and Ada (95)

Features

References

Accesion For

NTIS
DTIC
Unan

CRA&I
TAB
nounced

mlm -~

Justification

By

Distri

bution f

Availability Codes

Dist

Al

Avail and/or
Special

iii

o oo O»u w N

10
11
12
13
14
14
15
16
16

18

19

25

1. Introduction

This report describes software bindings for concurrent
development of electronic hardware designed in Very High Speed
Integrated Circuits (VHSIC) Hardware Description Language (VEDL) [1]
with software programmed in Ada 95 [2]. The purpose of these
bindings are to provide a framework from which future computer aided
engineering (CAE) implementors can develop concurrent engineering
capability into their work stations. These software bindings
include VHDL calls to Ada 95 subprograms and functions using the new
VHDL-93 ‘FOREIGN attribute. The called procedures written in Ada
95 can provide functionality similar to alternate VHDL processes.
Bindings are also provided for Ada 95 calls to VHDL representations
using new Ada 95 pragmas: Import, Export, and Convention. The
latest revision of VHDL and draft Ada 95 were selected to make these
bindings as current as possible.

These bindings are not only proposed to pass values between
VHDL and Ada 95 designs but also can be used to pass control
parameters to synchronize VHDL processes with Ada tasks and other
Ada 95 concurrent mechanisms. Control parameters are also proposed
to provide synchronous and asynchronous control between VHDL
processes and Ada 95 remote procedure calls across partitions for
distributed processing. The system designer can use this
methodology to simulate prototypes of different allocations of
hardware processes vs. concurrent software features.

In order to compare detailed VHDL and similar Ada 95
structures for language rule differences, BNF descriptions were
combined into expanded descriptions. These descriptions plus
semantic rules from the two standards were used to compare the
behaviors of VHDL processes with Ada 95 tasks, subroutines,
packages, basic declarations and types, statements, and VHDL
entities with Ada 95 generic packages. The goal was to maintain
consistent functionality across the VHDL and Ada 95 language
boundaries.

2. Rationale for Binding VHDL with Ada 95

A binding of two programming languages provides the capability
for a program written in one language to call subprograms existing
in a program of another language. Bindings are normally required
to handle non-compatible parameter passing conventions, syntax
differences in the actual parameters of the subprogram call, syntax
differences in the structure of the subprogram call, or semantic
(language rule) differences which could restrict subprogram results
from what is expected in the calling program. Bindings have become
very important requirements for reusing large amounts of existing
code in languages other than what is currently used.

The purpose of this report is to provide bindings to serve as
gateways for VHDL implemented designs to call behaviors programmed
in Ada 95 being developed concurrently. These bindings, if
implemented by computer aided engineering (CAE) developers of VHDL
tools, can help extend the system design capability of VHDL to
simulate software behavior as an integral part of the VHDL design.
Systems design normally begins with hardware, locking in design
constraints before software is considered. What results is
inefficient system performance. A concurrent engineering approach
would maximize efficiency, reduce the design time of allocating
hardware and software resources, and significantly <reduce
integration problems and total system cost.

Ada 95 1s the new draft revision of the Ada programming
language (ANSI/MIL-STD 1815) scheduled to be an ISO and ANSI
standard in January 1995 (ANSI/ISO/IEC-8652:1995). Ada 95 provides
a tremendous amount of new capabilities such as object oriented
programming, hierarchical libraries to reduce recompilation, and
several real time features to increase program efficiency. To reuse
existing programs in other programming languages, Ada 95 provides
bindings in the form of standardized packages for interfacing with
C, COBOL, and FORTRAN. It also provides interfacing pragmas
including Import, Export, and Convention which can be used with
subprogram calls to other languages. This report incorporates these
interfacing pragmas in its bindings from Ada 95 to VHDL. Ada 95 was
selected by the author of this report because of its tremendous
value to large programming efforts (both commercial and military)
and because it is expected to be competitive with other software
languages as compilers become available. Five years on the Ada 95
Distinguished Reviewer Team and ten years evaluating the VHDL
language development and CAD tools led the author to develop a VHDL
to Ada 95 binding as a first step toward concurrent engineering.
Since both VHDL and Ada 95 are newly revised, taking advantage of
these new language capabilities should maximize the useful lifetime
of such bindings.

At the time this report was written, VHDL just finished a new
revision (June 1994). Ada 95 existed as a draft ISO standard but
later became a revised Ada standard in January 1995.

3. VHDL Provided Language Interface Feature

The following VHDL features are used in the VHDL to Ada 95
binding. These package and associated rules come from the VHDL
standard (ANSI/IEEE Std 1076-1893):

The following example uses the VHDL attribute FOREIGN (from
ANSI/IEEE Std 1076-1993, para 2.2 (230), page 24) to declare a
foreign function subprogram.

package P is
function F return INTEGER;
attribute FOREIGN of F: function is
"implementation-dependent information™;
end package P;

Notes specific to binding [1]:

a. Parameter passing mechanisms for foreign subprograms are not
defined by VHDL but can be specified in Ada 95.

b. Pure subprograms are pure functions that have no effect on other
objects in the description except for computing the returned value.

c. Special VHDL elaboration rules (Sections 12.3 and 12.4) are
repeated here for convenience to the reader.

The elaboration of a declarative part consists of the elaboration
of the declarative items, if any, in the order in which they are
given in the declarative part. This rule holds for all declarative
parts, with three exceptions [1]:

1. The entity declarative part of a design entity whose
corresponding architecture is decorated with the 'FOREIGN attribute
defined in package STANDARD.

2. The architecture declarative part of a design entity whose
architecture is decorated with the ‘FOREIGN attribute defined in
package STANDARD.

3. A subprogram declarative part whose subprogram is decorated
with the ‘FOREIGN attribute defined in package STANDARD.

For these cases, the declarative items are not elaborated; instead,
the design entity or subprogram is subject to implementation—
dependent elaboration.

(Note: The value of every signal will be defined by the time
simulation begins.)

Summary of other elaboration rules:
You can’t use a declaration until it is elaborated.

d. A pure function subprogram may not reference a shared variable.

e. Package STANDARD (Section 14.2) includes:
attribute FOREIGN: STRING:;
Page 202 of package STANDARD states:

The VHDL ‘FOREIGN attribute may be associated only with
architectures (see Section 1.2) or with subprograms. 1In the latter
case, the attribute specification must appear in the declarative
part in which the subprogram is declared (see Section 2.1).

f. The STRING value of the attribute may specify implementation-
dependent information about the foreign subprogram. The subprogram
describes an implementation defined action. Foreign subprograms may
have non-VHDL implementations.

g. An implementation may place restrictions on the allowable modes,
classes, and types of the formal parameters to a foreign subprogram;
such restrictions may include restrictions on the number and
allowable order of the parameters.

h. At return, copy back of formal to actual parameters occurs (when
necessary) .

Note: The above VHDL implementation defined elaboration rules of
"FOREIGN attribute allow Ada 95 library units that have been pre-
elaborated (pragma Pre-elaborate [(library unit name)];)

to be referenced through the VHDL ‘FOREIGN attribute.

4, VHDL to Ada 95 Binding - BNF description

The following VHDL to Ada 95 subprogram calls use the VHDL
'FOREIGN attribute as shown above and adds Ada 95 specific syntax
constraints within the quotes provided by the "FOREIGN declaration.
Signals and Files are not represented as actual parameters of the
subroutine and function calls because they are not defined in the
Ada 95 language. The designer would only call Ada 95 programs for
behavior that the Ada 95 language can provide. Therefore, signals
and files would be confined to VHDL. Buffer and linkage modes are
also not defined in the Ada 95 language. Therefore, the only modes

specified are in, out, and inout. (Note: Ada 95 expresses mode
inout as in out.) The string within the quotes represents Ada 95
specific information. Since Ada 95 allows for child and parent

procedures within Ada 95 hierarchical libraries, procedure and
function names may refer to child or parent procedures or functions.
Also, Ada 95 parameter specs may include access types with the
reserved word access before the subtype name.

subprogram specification ::=
procedure identifier | operational symbol
[({ [constant] identifier, {identifier} :in
subtype indication
| [variable] identifier, {identifier} : [in | out |
inout] subtype indication [:= static_expression] })I];

attribute FOREIGN of identifier : procedure is
"procedure [parent unit name.] identifier [formal part]";

The BNF description of a function call with binding information is:

[pure | impure] function identifier | operator
[({ [constant] identifier, {identifier} :in
subtype indication
| [variable] identifier, {identifier} : [in | out |
inout] subtype indication [:= static_expression] })1;

attribute FOREIGN of identifier : function is
"function [parent unit_name.] identifier [formal part]™;

The formal part is described as follows:
formal part ::= (parameter_spec { parameter_spec }

parameter spec ::=
identifier {, identifier} : [in] | in out | out
subtype name [:= default_expression]
| identifier {, identifier} : access subtype_name
[:= default_expression]

Elaboration is accomplished by Ada 95 rules, which can be
controlled by an Ada 95 pre—elaboration pragma if needed.

5. Package VHDL to Ada 95

Since one of the original development goals of VHDL was to be
Ada like when appropriate, many of the VHDL types are the same as
Ada. However, some type differences exist. The following type
declarations provide those Ada 95 types unsupported by VHDL which
could return as parameters through the VHDL to Ada 95 interface.
No subprograms using these types are provided in this package.
These types should only be used by subprograms within the Ada 95
language. These types are declared in this package for storage
purposes or for assigning values within the VHDL language.

Ada 95 contains type real which consists of floating point and
fixed point types. VHDL contains type real which only supports
floating point but not fixed point (at least not without the
following declaration). Ada 95 defines floating point using the
reserved word digits. VHDL has no reserved word digits but instead,
is implementation defined with a minimum range. Ada 95 fixed point
is defined using the reserved word delta. Again, VHDL has no such
reserved word. Therefore, fixed point should be avoided when using
this VHDL to_Ada_95 interface.

If the Ada 95 optional Numerics Annex is implemented, then
different models for floating and fixed point types are provided by
Ada 95. However, there still is a problem in finding a VHDL
equivalent for fixed point.

pPackage VHDL to_Ada 95 is

-— type Fixed point : -- No way of expressing Fixed Point
- in VDHL has been found.

—— type derived (derived types are a proposed addition to
- a future revision of VHDL). Without this
- or some alternative OOP approach, inheritance
- across the language interface is not

-— supported with this package [4].

-— The following are example calls through interface
—— procedures or using interface functions.

~— procedure call:

—— ©Pprocedure Name (variable Name : inout Type := Initial value
—-— attribute FOREIGN of Name : procedure is
—- "procedure Ada_name (Name : in out Type := Initial value)"

—— function call:
—- function Name return String;
—— attribute FOREIGN of Name : function is
—-— "function Ada_ name return String;"

end package VHDL to_Ada_ 95;

When implementing a package 1like the above, type integer
accuracy should be taken into consideration. VHDL integer accuracy
is guaranteed to have a range of -2147483647 to +2147483647. Ada
95 integer accuracy shall have at least the range -2**15 + 1 to
2*x15 -1, If the Ada 95 Numerics Appendix which includes complex
arithmetic with functions and procedures is used, then accuracy
requirements are different.

Many attributes are different between VHDL and Ada 95.
Therefore, using attributes of returned parameters from the
interface to Ada 95 should be avoided.

The type conversion procedures and status functions in the
above package are provided to convert Ada 95 types which are
incompatible to corresponding VHDL types. Incompatable types could
be returned through parameters within the VHDL to Ada 95 interface.

6. VHDL to Ada 95 Binding - Example

The following is an example of a procedure call and a function
call using the new VHDL FOREIGN attribute.

package P is
—-— procedure call:
procedure New Car (variable Passenger : inout Person
attribute FOREIGN of New_Car: procedure is
"procedure Vehicle.New_Car (Passenger : in out Person)"

-— function call:
function Attitude return String:
attribute FOREIGN of Attitude : function is
"function Attitude return String:"
end package P;

The following example shows a procedure call from a VHDL
process to an Ada 95 procedure. The call is indirrect through a
VHDL package. The Ada procedure implements the behavior of a
calculation. In contrast to this example is an eguivalent behavior
which is implemented into another VHDL process. Both processes are
embedded in architectures.

This example, although quite simplified, illustrates how
architectures containing VHDL processes and those containing foreign
procedure calls to Ada 95 procedures might be selected in the system
being simulated. By building hardware and software behavior
representations of architectures within the VHDL library, allocation
of behavior within the system can be simulated in either hardware
(VHDL processes) or software (Ada 95 procedures, functions, tasks,
protected types, or subprograms distributed across partitions) or
a combination of the two.

package VHDL to Ada 95 is
procedure A (X:in; Y:out)
attribute FOREIGN of A procedure is
"procedure A Ada (X:in: Y: 9out):; —- declaration of

‘e -—- Ada 95 procedure

end package VHDL to Ada_ 95;

package body VHDL to Ada 95 is

procedure A (X:in; Y:out)

attribute FOREIGN of A procedure is

"procedure A Ada (X:in: Y: out); -— declaration of
begin -— Ada 95 procedure.

end Vﬁﬁﬁ_to_Ada_95;

library .
use VHDL to Ada_ 95.all

architecture Hardware of Entity Com is

begin
process Do_it (Clk)
begin
A (X,Y):

end;

—— On Ada 95 side of interface:
package Ada_ example is
procedure A Ada (X,Y)

en& package Ada example;

package body Ada_example is

procedure A Ada (X,Y)
begin
—- Example behavior in
—-—- Ada procedure.
Y = X + 2*X**2 + 3FX**3;
end A Ada;
begin
A Ada (X,Y):

end procedure A Ada;

end package Ada_example;

Equivalent VHDL process of above Ada behavior:
architecture Hardware of System;

process B _VHDL
begin

Y = X + 2*¥X**2 + 3*X**3;
end process B_VHDL;

Because the VHDL process <can only provide 1limited
functionality compaired to what Ada or Ada 95 can provide, a more
realistic and useful example would contain several processes plus
additional hardware providing a total function similar to what Ada
95 code can represent.

7. Ada 95 Provided Language Features and BNF description

In order to show what specific Ada 95 features are to be used
in the Ada 95 to VHDL binding, the following pragmas come from the
Ada 95 (ANSI/ISO/IEC-8652:1995) standard.

Ada 95 interfacing pragmas:

pragma Import ([Convention =>] convention identifier,
[Entity =>] local name [, [External name =>]
string expression] [, [Link_Name =>]
string expressionl]):;

pragma Export ([Convention =>] convention identifier,
[Entity =>] local name [, [External name =>]
string expression] [, [Link Name =>]
string expressionl]):;

pragma Convention ([Convention =>] convention identifier,
[Entity =>] local_name);

Interfacing pragmas are only allowed at a declarative item or
at a compilation unit.

link name -> expected type is string
convention name -> implementation defined
except for Ada and Intrinsic. (Ada 95 conformance rules
6.3.1)
calling convention -> convention of a callable entity.

pragma Linker options (String expression);

A pragma Linker Options is allowed only at the place of a
declarative item.

10

8. Package Ada 95 to_VHDL

package Ada 95 to_VHDL is

type BIT is ('0’,"1");
type BIT _VECTOR is array (Natural range <>) of BIT;

—— The following example represents how each Ada 95 interface
-- pragma can be used for interacting with other languages.

-— pragma Import (
- Entity => Clock
- Tick):

-- pragma Export (VHDL, ;
-- pragma VHDL (Convention =>);

end package Ada_95_to_VHDL;

Since one of the original goals of VHDL was to make it Ada
like when appropriate, many of the VHDL types are the same as Ada.
However, some type differences exist. The above type declarations
provide those VHDL types unsupported by Ada 95 which could return
as parameters through the Ada 95 to VHDL interface. No subprograms
using these types are provided in this package. These types should
only be used by subprograms within the VHDL language. These types
are declared in this package for storage purposes only within the
Ada 95 language. The above two types are repeated from the VHDL
predefined environment standard package. They are not in the Ada
predefined environment.

VHDL types unsupported by Ada 95:

VHDL signals cannot be represented (at least without
complication) by Ada 95 types and should not be passed
across the Ada 95 to VHDL interface. However, signals
can be set to values represented by constants orx variables
sent across the interface by parameters. The subtype of
the signal has to be restricted to types compatible to
Ada 95 types.

Since VHDL type physical requires a language syntax that
is unsupported by Ada 95, no way could be found to hold
physical type information, or units, in Ada 95.

Therefore, type physical should be avoided when using
the above package.

11

9. Ada 95 to VHDL Binding - Examples

The following simple example shows how the above Ada 95
pragmas could be used to call VHDL subprograms or access VHDL data

types. Due to differences in type restrictions between the two
languages, Ada 95 access to some VHDL types are not allowed. For
example, a signal has no meaning in Ada 95. VHDL variables have

limited use compared to Ada 95.
—— Ada 95 side of the Interface:
procedure Work_with (Bit_Stream : in out BIT Vector) is

end Work with;

pragma Import (Status_ Register, Register)
Work _with (Status_Register);

pragma Export (Status Register, Register):

—— VHDL side of interface:

package Hardware is
type W is array (Integer range <>) of BIT;

variable Register : W (0 to 31):
end.ﬁérdware;

with Hardware:;
architecture

12

10. System Design Considerations

Designing a system includes allocating system functional
components to hardware and software. This involves making design
tradeoffs for efficiency. If the computer aided engineering system
provides the capability to substitute an Ada task for a concurrent
VHDL process, then the designer can simulate both from within the
VHDL design to test which combination of hardware and software
implementations works most efficiently.

An architecture can include processes that implement a certain
functionality or, by implementing some of the concepts suggested in
this report, implement calls to Ada procedures using the VHDL
‘FOREIGN attribute. This is suggested in the BNF below.

architecture ::=
architecture Example of Entity E is
process ... vs. call to_Ada_Subprogram
that has been declared
with attribute ‘FOREIGN.

Section 11 contains examples of calling concurrent Ada 95
features from VHDL processes. Since VHDL architecture behavior is
represented by concurrent process statements and other concurrent
statements, tradeoffs could be made by simulating various
combinations of concurrent features both in VHDL and Ada 95.

Section 12 1lists Ada 95 features which tie (or map) how
software interacts with hardware or resides with hardware in the
system. These features interface coexisting hardware (or VHDL
representations of hardware) and software (implemented in Ada 95).

13

11. VHDL processes interacting with Ada 95 concurrent features

The following discussion describes how VHDL processes can use
the VHDL to Ada 95 interface to activate Ada 95 tasks and other
concurrent features.

a. Interacting with Ada tasks

A VHDL process passes a constant or variable through a VHDL
subroutine parameter. The subroutine in this interface package
calls an Ada 95 subprogram which activates a task and passes
appropriate parameter values to the task’s accept statement (or task
entry) . The Ada 95 task controls the VHDL process passing a
variable to the Ada 95 interface subprogram which passes it to the
VHDL interface subprogram. A signal is assigned the current value
of the variable within a VHDL subroutine. The signal then controls
the process through the process sensitivity list. Therefore, the
desired behavior is for the process to wait for the Ada task to
complete before it continues.

The following are example interactions between a VHDL process
and an Ada 95 task.

Implementing interface package to activate an Ada 95 task:

package VHDL to Ada_ 95 is
procedure Synchronize (X:in; Y:out)
attribute FOREIGN of Synchronize: procedure is
"procedure Activate (X:in: Y: out); -- declaration of Ada 95
—-— procedure that activates Ada 95 task.

end package‘QﬁDL_to_Ada_95;

package body VHDL to Ada_ 95 is
procedure Synchronize (X,Y):

end Vﬁﬁﬁ_to_Ada_95;

library .
use VHDL to_Ada_95.all
architecture Hardware of Entity Com is

begin
process Do_it (Clk)
begin
Synchronize (X,Clk);
end;

14

—— Ada 95 side of interface:

procedure Activate (X,Y) is
begin

é&ﬁc (X,Y);

end Activate;

task Task_A is
entry Sync (X,Y):
begin
end;
task body Task A is
begin
loop
select
when
accept Sync (X: in) do
end Sync;
oxr
when ...
accept
end ...
end select:
end Task_A;

b. Interacting with Ada 95 protected types

The following interactions prdvide VHDL process to Ada 95
protected types.

- with the above VHDL code:
procedure Activate (X,Y)
begin
Set_Component (X,Y);

end procedure Activate;
- continue with Ada 95 code. The following protected
-— type declaration and body is taken from the Ada 95
- reference manual [2] for illustrative purposes on
- what is called from the above procedure.

protected Shared Array is
function component (N: in Index) return Item);

15

procedure Set Component (N: in Index; E: in Item);
private

Table : Item Array (Index) := (others => Null Item);
end Shared array;

protected body Shared Array is
function Component (N : in Index) return Item is
begin
return Table (N);
end Component;

procedure Set Component (N : in Index; E : in Item) is
begin
Table(N) := E;
end Set_Component;
end Shared Array;

- end of example from Ada 95 reference manual.

¢. Interacting with Ada 95 asynchronous control features

The following interactions provide VHDL process to real-time
Ada 85 synchronous task control for semaphore (or suspended objects)
two stage suspend operations. Ada 95 compiler implementation of the
Real-Time Systems Annex is required for this capability.

The following procedure calls to the Asynchronous Task Control
package in the Ada 95 Real Time Systems Annex:

procedure Activate (X)

begin
Hold(X); -- declared in the Ada%5 environment
if fé;Held, then -- A function declared in Ada 95
Continue (X); -- A procedure declared in Ada 95

end Activate;

The following procedure activates the Asynchronous Select (in
a task with an abortable part):

—— Ada procedure —— Ada 95 Asynch Select:
—-— called from VHDL (limited asynch behavior)
procedure Activate select
begin accept ASync (X):;
Async (X) ; .o
then abort

end Activate; “e
end select;
d. Interacting with Ada 95 distributed processing features
The following interactions provide VHDL processes access to

remote procedure calls (RPCs) across Ada 95 partitions for
distributed processing application. Ada 95 compiler implementation

16

of the Distributed Systems Annex is required for this capability.

Using the Remote Procedure Call (RPC) package in the System
library of Ada 95 distributed annex [2]:

with Ada.Streams
with System.RPC

—-— From within Activate procedure:
System.RPC.Read(Stream, Item,Last);

System.RPC.Write (Stream,Item);
—- Synchronous call to remote procedure
System RPC.Do_RPC(Partition, Params, Result);
—-- Asynchronous call to remote procedure
System RPC.Do_APC(Partition, Params):;

17

12. Mapping Ada 95 Software directly to hardware

The following is taken from the Ada 95 reference manual to
show what is available for mapping the software directly to hardware
or simulated hardware in VHDL.

Ada 95 representation items including representation clauses,
component clauses, and representation pragmas specify how types and
other features of the Ada 95 language are to be mapped onto the
underlying machine. When used for interfacing to VHDL, these
representation items can map Ada 95 behavior features on to VHDL
simulated hardware.

The Record layout aspect of representation consists of the
storage places for some of all components of a record. For example,

for Program Status_word use
record
System Mask at 0*Word range 0..7
Protection_Key at 0*Word range 10..11

end record;

Other examples of representation items [from 2]:

type Bit_Order is (High_Order First, Low_Order first);
Default_Bit order : constant Bit _Order:;

type T Address is implementation specific
pragma Convention (Intrinsic, ...):

-~ Using package storage pools for storage management :
System.Storage Pools.Allocate (Pool, PR

—— Use streams for generic IO through attributes:
T'READ(...);

T'WRITE(...);

—— (The above is similar to the VHDL the ‘FOREIGN attribute.)

—- Interrupts:

Protected types can be used to control the servicing of
priority interrupts.

-~ Pre—elaborate:
An Ada procedure embedded in hardware such as a co-processor
can be called by an Ada 95 subprogram by using the pre-—elaboration

pragma. This tells the compiler that the embedded procedure is
already elaborated.

18

Appendix A Expanded BNF Descriptions of Key VHDL and Ada (95)
Features

These BNF descriptions are derived from what is listed in the
VHDL and (draft) Ada 95 reference manual [1 and 2].

VHDL Process statement (could be substituted for Ada task).
Guards: Sensitivity list of VHDL processes
Accept statements of Ada tasks

process_statement ::=
[process_label :]
[postponed] process [(sensitivity list)] [is]
process_declarative_part
begin
process_statement part
end [postponed] process [process label];

sensitivity 1list ::=
signal name {, signal name }

Note: When sensitivity list is present, an implicit
wait statement appears as the last statement in a
process statement.

process_declarative_part ::=
{ process_declarative_item }

process_declarative_item ::=
subprogram declaration

| subprogram_body

| type_declaration

| subtype declaration

| constant_declaration

| variable declaration

| file_declaration

| alias_declaration

| attribute declaration

| attribute specification

| use_clause

| group type declaration

| group declaration

process_statement_part ::=
{ sequential_statement }
Note: A process statement is "passive" if it
contains no signal assignment statement.

sequential_ statement ::=
wait_statement
| assertion statement
| zxeport statement
| signal_assignment_ statement
| variable_assignment_statement

19

| procedure_call_ statement
| if statement

| case_statement

| loop_statement

| next_statement

| exit_statement

| return_statement

| null_statement

Ada (95) Tasks contain the following:

handled_sequence of statements ::=
sequence_of statements
[exception
exception_handler
{ exception_handler }]

sequence_of statements ::=
abortable_ part

| accept_alternative
| case_statement_alternative
| conditional_entry call
| delay alternative
| entry call alternative
| exception_handler
| handled sequence_of statements
| if_ statement
| loop_statement

| selective_accept

| triggering alternative

exception_ handler ::=
handled_sequence_of statements

sequence_of statements ::=
statement { statement }

statement ::=
{label}l simple statement
| {label} compound statement

simple_statement ::=
null_ statement

| assignment_statement

| goto_statement

| return_statement

| requeue_statement

| abort_statement

| code_statement

| exit_statement

| procedure call_statement

| entry call_ statement

| delay statement

| raise_statement

compound_statement ::=

20

if statement
| case_statement
| loop statement
| block statement
| accept_statement
| select_statement

assignment_statement ::=
variable name := expression;

VHDL Subprograms:

subprogram declaration ::=
subprogram specification ;

subprogram_specification ::=
procedure designator [(formal parameter_ list)]
| [pure | impure] function designator
[(formal parameter_list)] return type mark

designator ::= identifier | operator_symbol
operator_symbol ::= string_ literal
formal parameter list ::= parameter_ interface_ list

subprogram body ::=
subprogram specification is
subprogram declarative_part
begin
subprogram_statement_part
end [subprogram kind] [designator];

subprogram _declarative part ::=
{ subprogram declarative_item }

subprogram_declarative_item ::=
subprogram declaration

[subprogram body

| type_declaration

| subtype declaration

| constant_declaration

| variable declaration

| file_declaration

| alias_declaration

| attribute_ declaration

| attribute_specification

| use_clause

| group_ template_declaration

| group_declaration

subprogram_statement part ::=
{ sequential_statement }

subprogram kind ::= procedure | function

21

VHDL Package Declarations:

package_declaration ::=
package identifier is
package_declarative part
end [package] [package simple name];

package_declarative part ::=
(package_declarative_item)

package_declarative)item ::=
subprogram declaration

| type

| subtype

| constant

| signal

| shared variable

| file

| alias

| component

| attribute_declaration

| attribute specification

| disconnection specification

| use clause

| group template

| group

package body ::=
package body package simple name is
package_body declarative part
end [package body][package simple name];

package_body declarative part ::=
{ package body declarative item }

package_body declarative item ::=
subprogram_declaration

| subprogram body

| type_declaration

| subtype

| constant

| shared variable

| file

| alias

| use

| group_ template

| group

22

Ada

(95) Subprograms:
subprogram declaration ::= subprogram specification;

subprogram specification ::=
procedure defining program unit name
parameter profile
| f£unction defining designator
parameter_and result_profile

subprogram body ::=
subprogram specification is
declarative_part
begin
handled sequence_of_ statements
end [designator];

Ada Subprogram Calls:

procedure_call statement ::=
procedure name;
| procedure prefix actual parameter_part;

function call ::=
function name
| function prefix actual_parameter_part;

Ada Packages:

package declaration ::= package_specification;

package_specification ::=
package defining program unit_name is
{ basic_declarative_item }

[private
{ basic_declarative item }]
end [[parent_unit name.]identifier]

package_body ::=
package body defining program unit_ name is
declarative part
[begin
handled sequence_of statements]
end [[parent_unit_name.]identifier];

23

VHDL Objects and Ada (95) Objects:

VHDL Types:

declaration ::=
type

| subtype

| object

| interface

| alias

| attribute

| component

| group_template

| group

| entity

| configuration

| subprogram

| package

type declaration ::=

full
| incomplete

full type_declaration

type identifier is
type _definition

type_definition ::=
scaler
| composite
| access
| file

scaler type definition
enumeration
| integer
| floating
| physical

composite type definition

array
- | record

Ada (95) Types:

basic_declaration ::=
type_declaration

| subtype

| object

| number

| subprogram

| abstract_subprogram

| package

| renaming

| exception

| generic

| generic instantiation

type declaration ::=
full | incomplete
| private_type
| private_extension

full type_declaration ::=
type defining identifier

; [known_discriminant_part]

| task_type declaration
Iprotected type declaration

type definition ::=
enumeration

| integer

| real

| array

| record

| access

| derived

1= derived type definition ::=

[abstract] new
parent subtype indication
[record extension part]

access_type definition ::=

file declaration

file identifier 1list

access subtype indication

subtype indication
[file open_information];

subtype_declaration ::=
subtype identifier is
subtype indication;

subtype declaration ::=
subtype identifier is
subtype indication;

24

References

1. The Institute of Electrical and Electronic Engineers, Inc.,
IEEE Standard VHDL Language Reference Manual. ANSI/IEEE Std 1076-

1993.

2. International Organization for Standardization, Ada 95
Reference Manual, The Language, The Standard Libraries. ANSI/ISO/
IEC-8652:1995 International Standard, Version 6.0, January 1995.

3. Intermetrics, Inc., Ada 95 Rationale. January 1995.

4. Solid State Electronics Directorate, Wright Laboratory, Air
Force Materiel Command, LtCol Michael T. Mills, Technical Report:
Proposed Object Oriented Programming (OOP) Enhancements to the Very
High Speed Integrated Circuits (VHSIC) Hardware Description Language
(VBDL) . WL-TR-93-5025, August 1993.

5. Solid State Electronics Directorate, Wright Laboratory, Air
Force Systems Command, LtCol Michael T. Mills, Technical Report:
Very High Speed Integrated Circuits (VHSIC) Hardware Description
Language (VHDL) Syntax and Semantics Summary. WL-TR-91-5030, June
1991.

25

